Archiv der Kategorie: Pi4J

Raspberry PI + Servo

Ansteuerung eines Standard Servos mit dem Raspberry PI 3.

Für die spätere Verwendung auf einem Roboter soll der Servo in +/- Grad mit Bezug zur Mittelstellung gesteuert werden.

Weiterhin soll für den Servo, da die beiden Hardware PWMs schon für einen anderen Zweck verwendet werden, der Software PWM zur Anwendung kommen.

Auf die Funktionsweise eines Servos gehe ich hier nicht ein, dies kann bei Bedarf bei http://rn-wissen.de/wiki/index.php/Servos oder anderen Websites nachgelsen werden.


Hardware

PI3 (oder älter bitte auf die richtigen Pins achten)
Standard-Servo
Diverse Kabel ( Vorgefertigte Pin-Header Kabel)


Aufbau

GPIOs

  • Ansteuerung des Servos GPIO 27

(Die GPIOs gelten nur in Verbindung mit pi4j und wirePi)

 

Plan

 


Software

Entwicklungsumgebung

Als Entwicklungsumgebung verwende ich BlueJ auf dem PI selbst. Hiermit habe ich die folgenden Klassen erstellt.


Code

Erste Testklasse

Hier die erste Testklasse welche alle Positionen des Servos mal abfährt.

[gistpen id=“232″]

Servo-Klasse

Klasse zur Steuerung des Servos. Die zwei wichtigsten Methoden sind:

  • setPos – Setzen der Position, Wertebereich von posMin bis posMax wobei (posMax-posMin+1)  die Mittelstellung ist.
  • setDeg – Diese Methode projeziert die eingegebende Gradzahl auf die möglichen positionen (sehr ungenau 🙁 )

[gistpen id=“228″]

Test-Klasse

Klasse mit Main-Methode zum Testen des Servos. In der Main-Methode werden alle Positionen abgefahren wobei die Positionierung über den Winkel relativ zur 0 Position erfolgt.

[gistpen id=“230″]


Tips

Das Positionieren über die PI4j Lib ist sehr ungenau für die 180° Bewegungspielraum des Servos stehen gerade mal rund 20 (+-2) Positionen zur Verfügung. Das sind rund 9° pro Position.  Evtl. sollte man vorher testen welche Positionen für den Aktuellen Zweck am besten geeignet sind. Sollte der genaue Winkel wichtig sein, ist es besser diesen vorab zu messen als ihn über die setDeg Methode berechnen zu lassen.

Es gibt noch weitere Lib’s (Servoblast, … ) die evtl genauer sind, evtl müsste man auch überlegen die Programmiersprache zu wechseln und dann den Ensprechenden Code über das Nativ-Interface anzusprechen bzw. irgendwie anders 😉 .


Einen anderen Weg gehen …

Ich habe versucht den Software PWM innerhalb eines Threads laufen zu lassen, jedoch ohne Erfolg. Der Servo weigert sich zu funktionieren.  Über die Ursache hierfür bin ich mir noch im unklaren ich nehme allerdings an, dass hierdurch der Timer zerschossen wird.

Nach diversen Tests mit unterschiedlichen Frequenz-Einstellungen habe ich mich entschlossen ServoBlaster od.  besser die PI variante (PiBits) zu verwenden. Die Installation gestaltet sich einfach wie folgt.

[gistpen id=“257″ ]

Jetzt muss der ServoBlaster nur noch über Java angesprochen werden. Hier ein einfaches Beispiel zum testen.

… kommt noch

Die Implementierung in anständigen Klassen sieht dann wie folgt aus.

… kommt noch


Tips für den neuen Weg

Wenn die exec Funktion von Java nix macht ist hier ein guter Link zum Bugfixing.

http://www.javaworld.com/article/2071275/core-java/when-runtime-exec—won-t.html

Weiterhin könnte es helfen nicht die Println Methode zu verwenden, da zumindest mein PI den Abschluss der Zeile nicht richtig interpretieren konnte. (Beispiel „5=100\n)“ sollte funktionieren).

 

Quellen

http://razzpisampler.oreilly.com/ch05.html
https://github.com/Pi4J/pi4j/blob/master/pi4j-example/src/main/java/MaestroServoExample.java
https://www.bluej.org/raspberrypi/ServoMotor.html
https://phyks.me/2015/05/controlling-servomotors-on-a-raspberry-pi.html
http://rn-wissen.de/wiki/index.php/Servos
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster

Raspberry Pi Servo Motor Steuerung

Between 0 and 1 – PWM with Raspberry Pi

 


Anhang

Pin-Belegung

 

Pi4J + BlueJ

Da ich am liebsten im Java programmiere, verwende ich die Bibliothek Pi4J zur Ansteuerung der GPIOs am Raspberry Pi 2 und 3.

Auf die Installation der Bibliothek werde ich nicht näher eingehen, da dies auf den folgenden Webseiten schon erschöpfend beschrieben wurde.

http://pi4j.com/install.html
http://pi4j.com/utility/pi4j.html
http://www.forum-raspberrypi.de/Thread-tutorial-ansteuerung-der-gpio-ports-mit-pi4j

Auch wichtig zu wissen ist, dass Pi4J auf der wiringPI Bibliothek aufbaut und diese natürlich mit installiert werden muss.

Als Entwicklungsumgebung verwende ich BlueJ, weil man hier auch gleich noch ein Klassendiagramm mit bekommt.

Also Doku gibts genug, warum dann dieser Beitrag?

Ich möchte nach und nach eine kleine FaQ erstellen mit den Problemen die ich während der Nutzung dieser beiden Tools hatte, habe und haben werde.

Die Ports machen nix

In der alten Version vom BlueJ, scheint in den Einstellungen das Flag zur Auführung als Root nicht richtig initialisiert zu sein. Nach dem Start von BlueJ einfach das Flag entfernen und wieder rein machen dann gehts. Dieses Problem scheint in der aktuellen Version behoben zu sein.

Sollte es dann immer noch nicht klappen einfach mal die IOs auf der Console testen. Hilfe gibts hier oder hier.

Soweit ich weiss muss man zur Ansteuerung der GPIOs root (od. sudo) rechte besitzen. Der Benutzer pi ist ensprechend gut ausgestattet und eignet sich am Besten für erste Tests. (Man soll sich ja nicht mehr als root anmelden ;( ).

Nach dem Upgrade geht nix mehr

Ich habe meinen Raspberry auf die neuste Version aktualisiert. Hierbei wurde auch der Kernel auf die Version 4.9.32 aktualisiert. Danach gingen die GPIOs nicht mehr. Ein Downgrade des Kernels auf die Version 4.4.50 hat das Problem erstmal gelöst. Hilfe hierzu gibt es hier und hier.

Software PWM beim Servo

Für ca. 180° stehen beim Software PWM leider nur 20 Stellungen/Schritte für den Servo zur Verfügung was ca. 9° pro Schritt entspricht.
Weiterhin gibt es durch andere Funktionen im Betriebssystem oft gewackel am Servo (jitter). Man sollte ihn so programmieren, dass die entsprechende Stellung angefahren wird und dann den PWM wieder ausschalten.

Eine bessere Möglichkeit ist natürlich einen Hardware PWM zu verwenden, wenn man noch einen frei hat ;).

Andere Bibliotheken die besser funktionieren sollen habe ich noch nicht getestet hier eine kleine Auflistung, diese müssten dann gegebenen Falls mit dem Java Native Interface angesteuert werden:

Weiteres zu PWM [1] [2] [3]

Weiter Probleme werden sicherlich folgen ….

Raspberry PI 3 + Motorsteuerung

Ziel ist es mit dem Raspberry PI 3 unter Zuhilfenahme einer Motorbrücke, 2 Gleichstrommotoren zu betreiben.

Dies soll später genutzt werden um einen zweirädrigen Roboter anzutreiben.


Hardware

PI3 (oder älter bitte auf die richtigen Pins achten)
Motorbrücke L9110s
2x DC Motor
Diverse Kabel ( Vorgefertigte Pin-Header Kabel)


Testaufbau

GPIOs am Raspberry

  • Motor1 Richtung GPIO 26
  • Motor1 Geschwindigkeit GPIO 1
  • Motor2 Richtung GPIO 24
  • Motor3 Geschwindigkeit GPIO 23

(Die GPIOs gelten nur in Verbindung mit pi4j und wirePi)

Plan


Software

Entwicklungsumgebung

Als Entwicklungsumgebung verwende ich BlueJ auf dem PI selbst. Hiermit habe ich vier Klassen erstellt. Diese werden im folgenden Abschnitt kurz erklärt.


Code

Da ich anfänglich ein paar Probleme hatte und die Motorbrücke nicht wie erwartet reagierte, habe ich mich langsam an das Thema herangetastet.

Digitale Ansteuerung

Zuerst habe ich eine kleine Testklasse geschrieben, welche die Motoren digital ansteuert. Hiermit konnte ich die richtige Verkabelung sicherstellen. Mit diesem Test ist noch keine Geschwindigkeitsregulierung möglich.

[gistpen id=“197″]

PWM Ansteuerung

Als nächstes habe ich eine Testklasse erstellt, die den Hardware PWM benutzt und ebenfalls die Richtungen wechselt.

[gistpen id=“205″]

Funktionalität in Klasse gepackt

Als letzten Schritt habe ich eine Klasse Drive zur Steuerung beider Motoren und die dazu gehörende Testklasse erstellt.

Drive Klasse

Klasse zur Steuerung der zwei Motoren.

[gistpen id=“207″]

Test-Drive Klasse

Klasse zum Testen der Motoren. Diese testet, wie auch im vorhergehenden Beispiel,  unterschiedliche Geschwindigkeiten und Richtungen.

[gistpen id=“209″]

 


Tips

Motoren drehen nicht in die richtige Richtung

Sollten die Motoren nicht in die richtige Richtung drehen, einfach die polarität am Anschluss an der Motorbücke vertauchen bis es passt. Sollte das nicht möglich sein, die Methoden forwardLeft/Right() und backwardLeft/Right() entsprechend anpassen.

Raspberry rebooted bei Aktivierung/Betrieb der Motoren

Sollte beim Einschalten/Betrieb der Motoren der Raspberry neu booten, kann dies am hohen Stromverbrauch der Motoren liegen. Dann sollte man überlegen die Motoren entweder über eine zusätzliche Spannungsquelle zu versorgen oder zumindest die Motoren mit einer Spule zu entstören. Condensatoren können zusätzlich Spannungspitzen abfangen.

Mehr zur Entstörung:

http://www.bnhof.de/~ho1645/entstoer.htm
https://www.mikrocontroller.net/articles/Motoransteuerung_mit_PWM

Schaltung mit zusätzlicher Spannungsquelle:

Hier wird der L9110 mit einem LiPo versorgt, wichtig ist es die Masse des Lipo mit der des Raspberries zu verbinden, sonst funktioniert es nicht. Der Lipo sollte im Bereich 3.7v und < 12V liegen (Beschränkung des L9910).

 


Quellen

Beispiel auf GitHub
PI4j Webseite
PWM + Motoren allgemein beim RoboterNetz

Einige andere Webseiten waren auch noch nützlich, einfach mal Google bemühen.


Anhang

Pin-Belegung

http://www.pi4j.com

Mit dem Raspberry PI 3 den Entfernungsmesser US-100 ansteuern

Ansteuerung eines Ultraschall-Entfernungsmessers US-100 mit dem Raspberry PI3 ( oder früher). Ich habe nur Tutorials für den SR-04 gefunden, dieser wird allerdings analog zum US-100 eingebunden.


Hardware

PI3 (oder älter bitte auf die richtigen Pins achten)
US-100 ( Ultraschallsensor)
Brot-Board (zum leichteren Aufbau)
Diverse Kabel ( Vorgefertigte Pin-Header Kabel)


Aufbau

Der US-100 arbeitet mit 3.3V womit man ihn direkt am Raspberry betreiben kann.

Verdrahtung

  • Trigger Pin am GPIO 28
  • Echo Pin an den GPIO 25

(Die GPIOs gelten nur in Verbindung mit pi4j und wirePi)

 


Software

Entwicklungsumgebung

Als Entwicklungsumgebung verwende ich BlueJ auf dem PI selbst. Hiermit habe ich zwei Klassen erstellt.


Code

Distance-Klasse

Klasse zur Steuerung des US-015, mit den Methoden

  • getDistanceMM – Entfernung in Millimetern
  • getDistanceCM – Entfernung in Zentimetern

[gistpen id=“156″]

Test-Klasse

Klasse mit Main-Methode zum Testen der Distance-Klasse. In der Main-Methode wird alle 5 Sekunde ein neuer Wert vom Sensor abgefragt und auf die Console geschrieben.

[gistpen id=“158″]

Tips

Bei größerer Beanspruchung des PI ist zu beachten, dass Java die zeitlichen Abfolgen nicht garantiert. Somit kann es zu verfälschten oder keinen Ergebnissen bei der Messung kommen.

Quellen

https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

http://t1m0b0t.blogspot.de/2014/04/using-ultrasonic-range-sensor-on.html

http://www.lediouris.net/RaspberryPI/HC-SR04/readme.htmlhttps://github.com/OlivierLD/raspberry-pi4j-samples/tree/master/RangeSensor

http://pi4j.com/pins/model-3b-rev1.html

Interfacing HC-SR04 Ultrasonic Sensor with Raspberry Pi

 

Entfernung messen mit Ultraschallsensor HC-SR04 – Raspberry Pi

Anhang

Pin-Belegung