Archiv der Kategorie: Roboter Hardware

GY-302 mit Sensor BH1750

Der BH1750 ist ein Sensor zur Lichtstärkenmessung. Ich verwende den Sensor nicht diskret sondern auf dem Board GY-302. Es wird über den I2c (Wire) Bus angesteuert. Da das GY-302 Board mit 5V betrieben wird, ist es zur Ansteuerung über den Ardunio Uno geeignet.

Ansicht

 

Daten

NameGY-302 mit Sensor BH1750
SensortypLuxmeter (Lichtstärkemessung)
Betriebsspannung5V
Sensorspannung 1,8-3,6V
BusI2c ( 0x23 / 0x5C )
Genauigkeit1 Lux
Messbereiche1 - 65535 Lux

Schaltung

Die Schaltung ist ähnlich (siehe Skizze) wie bei anderen GY Boards. Das GY-302 bietet zusätzlich die Möglichkeit zwischen zwei Bus-Adressen zu wählen. Dies ermöglicht es 2 Chips der gleichen Art am selben Bus zu betreiben. Standardeinstellung ist Masse oder einfach unbeschaltet lassen.

 

Anschluss

GND Masse
ADDR I2c Adresse Masse = 0x23 / + 5v = 0x5C
SDA I2C SDA
SCL I2C SCL
VCC 5 V

Einsatzzwecke

  • Steuerung von Jalousien oder Rollos
  • Findung der hellsten Stelle
  • Lichtmessung im Büro
  • Zeitsteuerung nach Sonnenauf/untergang

Programmierung

Bibliothek

Im Github gibts eine Bibliothek, welche den Sensor ansteuern kann.
Diese habe ich für meine Tests verwendet. Der Eintrag im Git hat auch eine detaillierte Beschreibung zu Verkabelung und Verwendung.

https://github.com/claws/BH1750

Die Bibliothek als Zip-Datei herunterladen und über den Bibliotheksmanager installieren.

 

Testprogramm

Bei der Bibliothek sind 3 Testprogramme enthalten, ich habe mich für BH1750test.ino entschieden.

Per Beispielmenü auswählen, kompilieren und den Uno programmieren.

Ausgabe

Die Ausagbe ist schlicht und zeigt den aktuell gemessenen Lux Wert.

Leider kann ich mangels Referenzwert nicht vergleichen wie genau die Messungen sind.

Probleme

Generelle I2c Probleme

http://fambach.net/uno-wire-scannen/

Quellen

https://github.com/claws/BH1750

https://www.mysensors.org/build/light-bh1750

http://www.mouser.com/ds/2/348/bh1750fvi-e-186247.pdf

GY-68 mit Sensor BMP85/BMP180

Der Bosch BMP85 ist ein barometrischer Sensor.  Er kann den Luftdruck und die Temperatur messen, um daraus die aktuelle Höhe über 0 zu berechnen.  Der BMP85 wird nicht mehr hergestellt und wurde durch den BMP180 abgelöst. Der BMP180 ist von der Bauform kleiner aber ansonsten fast baugleich mit seinem Vorgänger.  Unterschiede können den gelinkten Datenblättern entnommen werden.  Bei den Kerndaten habe ich bis auf den höheren Stromverbauch beim BMP180 keine Unterschiede feststellen können. (Datenblätter BMP85 / BMP180)
Der Sensor kann mit 1,8v bis 3,6V betrieben werden. Da der Arduino einen 5V I2c Bus hat empfiehlt es sich ein Sensorboard wie das GY-68 zu verwenden.

Ansicht

Daten

NameGY-68 mit Sensor BMP85/180
SensortypBarometer
Thermometer
Betriebsspannung5V
Sensorspannung 1,8-3,6V
BusI2c
Genauigkeit0,01 hPa
0,1°C
Messbereiche300hPa bis 1100 hPa
0°C bis +65°C

Schaltung

Anschluss

GND Masse
SDA I2C SDA
SCL I2C SCL
Vin 5 V

 

Einsatzzwecke

  • Bestimmung der Höhe über 0
  • Ausgleich/Vergleich von Aussen- und Innendruck
  • Warnung vor Überdruck
  • Erhöhung der Genauigkeit bei GPS

Programmierung

Bibliothek

Es gibt von Adafruit zwei Treiber-Bibliotheken. Eine ältere und die neue „Unified“. Beide leisten das Gleiche. Die „Unified“ folgt den Adafruit Programmierrichtlinien für Sensoren und ist somit bei einem Sensorwechsel leichter austauschbar.

Testprogramm

Das Beispielprogramm ist  in der Bibliothek enthalten. Diese habe ich für meine ersten Test verwendet.

Ausgabe

Die Ausgabe sieht erstmal OK aus. Mangels Vergleichswerten konnte ich diese, bis auf die Temperatur, nicht auf ihre Genauigkeit überprüfen. Die Temperatur war rund 2 Grad zu hoch.

Probleme

Generelle I2c Probleme

http://fambach.net/uno-wire-scannen/

Quellen

https://github.com/adafruit/Adafruit-BMP085-Library

https://github.com/adafruit/Adafruit_BMP085_Unified

Uno – Wire Scannen

Der I2c oder auch 2 Wire Bus genannt, arbeitet mit zwei Kabeln und  theoretisch mit einer Geschwindigkeit von bis zu 5 Mbit/s. Für den Hobbybedarf mit Freiluftverkabelung sind es wahrscheinlich eher weniger.

Der Uno hat den Wire-Anschluss am analogen Ausgang 4 und 5. Zum Testen habe ich ein GY-68 Barometer angeschlossen welches auf Port 0x77 des I2C Busses arbeitet.

Schaltung

Programm

Das folgende Testprogramm habe ich mir aus einigen Beispielen zusammen „gesucht“. Es dient dazu, einfach mal zu schauen ob die aufgebaute Schaltung auch richtig verdrahtet ist.
Das Porgram geht alle Adressen des I2C Busses durch und klopft mal beim Empfänger an. Antwortet dieser, wird der Port und am Schluss die Anzahl der gefundenen Teilnehmer angezeigt.

Quellocode

ScanWiree.ino

Ausgabe

Probleme

Das Wire Modul antwortet nicht

Einfach mal SDA und SDC vertauschen.

Sollte das Problem immer noch bestehen, mal veruschen Pullup Widerstände in die Schaltung einzubauen. Der Uno hat allerdings schon Pullups, sollte also eigentlich nicht nötig sein.

Quellen

https://de.wikipedia.org/wiki/I%C2%B2C

https://www.mikrocontroller.net/topic/88806

https://playground.arduino.cc/Main/I2cScanner

https://gist.github.com/tfeldmann/5411375

Motor Platine V1

Die Motorplatine ist perfekt für kleine Roboter-Projekte geeignet, bei denen 2 bis 4 Antriebsmotoren verwendet werden.

Zusätzlich bietet sie Anschlüsse für zwei Servos und die analogen Ports und mit ihnen auch der I2C Bus, sind durchgeschleift.

Überblick

Hier die wichtigsten Daten im Überblick:

  • 2 Servoanschlüsse
  • 2 Motorbrücken
  • 1 Schieberegistert
  • 1 Resetschalter
  • 1 Externer Spannungsanschluss
  • 1 Power LED
  • Jumper – zur Unterbrechung der Boardspannung

Ansicht

Beschaltung

Einsatz

  • Zwei-Achs-Plotter
  • 2 oder 4 Rad-Roboter
  • Pan/Tilt Stativ

Motorbrücken

Mit Hilfe der Motorbrücken können 4 Gleichstrommotoren oder 2  Schrittmotoren (mit 4 Leitungen) betrieben werden. Die L293D Motorbrücken können Motoren bis zu einem Strom vom 600mA versorgen. (Kurzzeitig bis zu 1,2 A). Wird ein höherer Strom benötigt können weitere L293D IC’s huckepack auf die vorhandenen aufgelötet und parallel betrieben werden.

Das Schieberegister, ermöglicht es mit nur 3 Pins des Arduinos die Drehrichtungen der Motoren zu bestimmen.

(evtl. mal einen Beitrag zum Scheiberegister einfügen…).

Für die Ansteuerung der Motoren gibt es unteranderem eine Bibliothek von Adarfruit. Diese kann über Git oder die Arduino GUI herunter geladen werden (siehe unten).

https://github.com/adafruit/Adafruit-Motor-Shield-library/zipball/master

Die Motorbrücken belegen die folgenden Pins am Arduino:

  • Pin 11 Motor 1 – Geschwindigkeit
  • Pin   3  Motor 2 – Geschwindigkeit
  • Pin   5  Motor 3 – Geschwindigkeit
  • Pin   6  Motor 4 – Geschwindigkeit
  • Pin   4, 7, 8, 12 Richtungsvorgabe für alle Motoren über 74HC595 Register.

Servoanschlüsse

Das Bord verfügt über zwei Steckplätze für Standardservos. Jeder Steckplatz hat drei Pins jeweils einen für Strom, Masse und den Steuereingang.

Die Steuereingänge belegen die folgenden Pins am Arduino:

  • Pin 9    – Servo 1
  • Pin 10 – Servo 2

Externe Spannungsversorgung

Hier können von 4.5V bis zu 25V an Schraubklemmen angelegt werden. Bitte auf die Polung achten sonst rauchts …

Kompatibilität

Der Shield kann mit folgenden Boards verwendet werden.

Arduino Uno

Arduino Uno

Arduino Leonardo

Arduino Leonardo

Uno + WiFi

Bedingt kompatibel, es wird eine externe Spannungquelle benötigt um mehr als einen Servo zu betreiben.

Arduino Uno + WiFi

Software

Bibliothek installieren

Ich habe mir die Bibliothek über GitHub herunter geladen und sie manuell installiert. Über die Arduino GUI geht es etwas einfacher.

Bibliotheksmanger aufrufen:

Nach „motor“ suchen und die „Adafruit Motor Shield Library“ in der letzten Version installieren.  Aufgepasst es gibt eine „Adafruit Motor Shield V2“ diese kann leider nicht für die V1 Platine verwendet werden. (Motorplatine V2).

Servos ansteuern

Im Grunde werden die Servos ganz normal über die Arduino Bibliothek angesprochen. Wichtig für die Motorplatine ist nur, dass hier die Servos an Port 9 und 10 angeschlossen sind.

Meine Billigservos, harkeln einwenig an den Endpunkten, diese könnte man noch ausschliessen indem man die Konstanten min und max anpasst.

Über den Faktor kann die Schrittgröße bestimmt werden und über wait die wartezeit zwischen den einzelnen Schritten.

[gistpen id=“629″]

ServoTest.ino

Motoren Ansteuern

Für einen ersten Test habe ich das vorhandene Beispielprogramm verwendet.

Einfach auswählen, kopilieren und schon läuft Motor 1.

Um alle 4 Motoren zu testen, was nützlich erscheint um die Drehrichtungen (Polung) zu überprüfen, habe ich die Datei wie folgt angepasst.

MotorTest2.ino

Die Ausgabe sollte dann wie folgt aussehen.

Quellen

https://playground.arduino.cc/Main/AdafruitMotorShield

https://learn.adafruit.com/adafruit-motor-shield/library-install

https://learn.adafruit.com/adafruit-motor-shield

https://learn.adafruit.com/adafruit-motor-shield/faq

 

Motorbrücken

Die Ausgänge von Mircrocontroller sind meist nur mit wenigen milli Ampere Strom belastbar. Dies reicht zur Ansteuerung einer LED aus ,ist aber für Motoren und andere Bauteile die mehr Leistung benötigen, nicht ausreichend.

Weiterhin ermöglicht die Motorbrücke eine Erhöhung der Betriebspannung, so können an Microcontrollern die mit 3.3V oder 5V betrieben werden, auch Motoren mit einer Spannung von beispielsweise 12V angeschlossen werden.

Unter folgenden Link ist die Funktion der Motorbrücke sehr gut beschieben, weswegen ich hier auf eine erneute Beschreibung verzichte.

http://www.asurowiki.de/pmwiki/pmwiki.php/Main/Motorbruecke

Schaltung

http://www.asurowiki.de/pmwiki/pmwiki.php/Main/Motorbruecke Copyright GNU FDL

Ansicht

Einfache Motorbrücke für zwei Motoren

Motorbrücken zum Aufstecken auf den Arduino UNO. Hat Ausgänge für 4 Motoren oder 2 vierpolige Schnrittmotoren.

Link zum Artikel

Weitere Bilder folgend …

Quellen

http://www.asurowiki.de/pmwiki/pmwiki.php

https://de.wikipedia.org/wiki/ASURO

 

Motor Platine V2

Die Motorplatine V2 ist eingetroffen. Ich habe gleich mal das Testprogramm der V1 angepasst und die Platine auf den Wemos Uno gesteckt, um zu sehen ob die Beiden zusammen hormonieren.

Überblick

Hier die wichtigsten Daten im Überblick:

  • 2 Servoanschlüsse
  • 2 Motorbrücken
  • 1 Wire (I2c) ansteuerung für die Motoren
  • 1 Externer Spannungsanschluss
  • 1 Power LED
  • Jumper – zur Unterbrechung der Boardspannung
  • Platz für zusätzliche Schaltungen
  • Möglichkeit eine weitere Platine aufzustecken

Ansicht

 

 

Beschaltung

Kompatibilität

Die Platine kann mit folgenden Boards verwendet werden.

Arduino Uno

Arduino Uno

Arduino Leonardo

Arduino Leonardo

Wemos d1 d2 esp8266

Da die Platine über den I2c Bus betrieben funktioniert sie auch mit dem WeMos. Allerdings gibt es die bekannten Einschränkungen bei den Analogen Ports, hier ist nur einer durchgeführt.

WeMos D1 R2 ESP8266

Software

Bibliothek installieren

Installation über die Ardurino GUI.

Bibliotheksmanger aufrufen:

Nach „motor“ suchen und die „Adafruit Motor Shield Library V2“ in der letzten Version installieren. In meinem Fall ist das die 1.0.5.

Achtung es gibt auch eine Biliothek „Adafruit Motor Shield Library“  diese ist für die alte Version des Boards.

Servos ansteuern

Ist gleich zur V1 Platine.

Motoren Ansteuern

Ich habe einfach das Testprogramm des V2 Boards angepasst. Weitere Erleuterungen findet ihr hier.

MotorSchieldV2Test.ino

Quellen

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview

https://github.com/adafruit/Adafruit_Motor_Shield_V2_Library

https://store.arduino.cc/adafruit-motor-stepper-servo-shield-v2-3

Feuchtigkeitsmesser DHT11

Der DHT kann die Luftfeuchtigkeit mit einer Genauigkeit von 5% und die Temperatur mit einer Genauigkeit von 2°C bestimmen.

Wertebereich

Luftfeuchte: 20-80%
Temperatur: 0-50°C

Pinning

Bildergebnis für DHT11

Lib

Ardunio liefert eine Lib mit. DHT11.h Heisst  sie und es muss im Konsturktor der Sensortyp (DHT11/22)  und der verwendete Daten Pin angegeben werden.

Die Lib muss zuvor über den Library Manger der Arduino GUI installiert werden. Zusätzlich wird der generelle  Treiber für Sensoren von Adafruit benötigt.

#define DHTPIN 2
#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE); // Konstruktor

Versuchsaufbau

Ardunino

DHT10 mit Arduino Uno

ESP8266

DHT10 mit ESP8266

Probleme

fatal error: DHT.h 

Code compiliert nicht. Evtl. wurden die DHT  Bibliotheken nicht insalliert.

Installiere die DHT lib von Adafruit:

fatal error: Adafruit_Sensor.h

Installiere die Standardlib von Adafruit:

 

Quellen

Nr.16 – DHT11 und DHT22

https://www.adafruit.com/product/386

https://learn.adafruit.com/dht

 

Raspberry PI + Servo

Ansteuerung eines Standard Servos mit dem Raspberry PI 3.

Für die spätere Verwendung auf einem Roboter soll der Servo in +/- Grad mit Bezug zur Mittelstellung gesteuert werden.

Weiterhin soll für den Servo, da die beiden Hardware PWMs schon für einen anderen Zweck verwendet werden, der Software PWM zur Anwendung kommen.

Auf die Funktionsweise eines Servos gehe ich hier nicht ein, dies kann bei Bedarf bei http://rn-wissen.de/wiki/index.php/Servos oder anderen Websites nachgelsen werden.


Hardware

PI3 (oder älter bitte auf die richtigen Pins achten)
Standard-Servo
Diverse Kabel ( Vorgefertigte Pin-Header Kabel)


Aufbau

GPIOs

  • Ansteuerung des Servos GPIO 27

(Die GPIOs gelten nur in Verbindung mit pi4j und wirePi)

 

Plan

 


Software

Entwicklungsumgebung

Als Entwicklungsumgebung verwende ich BlueJ auf dem PI selbst. Hiermit habe ich die folgenden Klassen erstellt.


Code

Erste Testklasse

Hier die erste Testklasse welche alle Positionen des Servos mal abfährt.

[gistpen id=“232″]

Servo-Klasse

Klasse zur Steuerung des Servos. Die zwei wichtigsten Methoden sind:

  • setPos – Setzen der Position, Wertebereich von posMin bis posMax wobei (posMax-posMin+1)  die Mittelstellung ist.
  • setDeg – Diese Methode projeziert die eingegebende Gradzahl auf die möglichen positionen (sehr ungenau 🙁 )

[gistpen id=“228″]

Test-Klasse

Klasse mit Main-Methode zum Testen des Servos. In der Main-Methode werden alle Positionen abgefahren wobei die Positionierung über den Winkel relativ zur 0 Position erfolgt.

[gistpen id=“230″]


Tips

Das Positionieren über die PI4j Lib ist sehr ungenau für die 180° Bewegungspielraum des Servos stehen gerade mal rund 20 (+-2) Positionen zur Verfügung. Das sind rund 9° pro Position.  Evtl. sollte man vorher testen welche Positionen für den Aktuellen Zweck am besten geeignet sind. Sollte der genaue Winkel wichtig sein, ist es besser diesen vorab zu messen als ihn über die setDeg Methode berechnen zu lassen.

Es gibt noch weitere Lib’s (Servoblast, … ) die evtl genauer sind, evtl müsste man auch überlegen die Programmiersprache zu wechseln und dann den Ensprechenden Code über das Nativ-Interface anzusprechen bzw. irgendwie anders 😉 .


Einen anderen Weg gehen …

Ich habe versucht den Software PWM innerhalb eines Threads laufen zu lassen, jedoch ohne Erfolg. Der Servo weigert sich zu funktionieren.  Über die Ursache hierfür bin ich mir noch im unklaren ich nehme allerdings an, dass hierdurch der Timer zerschossen wird.

Nach diversen Tests mit unterschiedlichen Frequenz-Einstellungen habe ich mich entschlossen ServoBlaster od.  besser die PI variante (PiBits) zu verwenden. Die Installation gestaltet sich einfach wie folgt.

[gistpen id=“257″ ]

Jetzt muss der ServoBlaster nur noch über Java angesprochen werden. Hier ein einfaches Beispiel zum testen.

… kommt noch

Die Implementierung in anständigen Klassen sieht dann wie folgt aus.

… kommt noch


Tips für den neuen Weg

Wenn die exec Funktion von Java nix macht ist hier ein guter Link zum Bugfixing.

http://www.javaworld.com/article/2071275/core-java/when-runtime-exec—won-t.html

Weiterhin könnte es helfen nicht die Println Methode zu verwenden, da zumindest mein PI den Abschluss der Zeile nicht richtig interpretieren konnte. (Beispiel „5=100\n)“ sollte funktionieren).

 

Quellen

http://razzpisampler.oreilly.com/ch05.html
https://github.com/Pi4J/pi4j/blob/master/pi4j-example/src/main/java/MaestroServoExample.java
https://www.bluej.org/raspberrypi/ServoMotor.html
https://phyks.me/2015/05/controlling-servomotors-on-a-raspberry-pi.html
http://rn-wissen.de/wiki/index.php/Servos
https://github.com/richardghirst/PiBits/tree/master/ServoBlaster

Raspberry Pi Servo Motor Steuerung

Between 0 and 1 – PWM with Raspberry Pi

 


Anhang

Pin-Belegung